วันเสาร์ที่ 29 กรกฎาคม พ.ศ. 2560

เซต

เซต  เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
       เซตสระในภาษาอังกฤษ  หมายถึง  กลุ่มของอังกฤษ  a, e, i, o และ u
       เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง  กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9
        สิ่งที่ในเชตเรียกว่า  สมาชิก  ( element หรือ members ) อ่านเพิมเติม

เอกภพสัมพัทธ์

           เอกภพสัมพัทธ์ คือ เซตที่ประกอบด้วยสมาชิกทั้งหมดของสิ่งที่เราต้องการจะศึกษา สามารถเขียนแทนได้ด้วยสัญลักษณ์ u
           เอกภพสัมพัทธ์ (Relative Universe) ในการพูดถึงเรื่องใดก็ตามในแง่ของเซต  เรามักมีขอบข่ายในการพิจารณาสมาชิกของเซตที่จะกล่าวถึง  โดยมีข้อตกลงว่าเราจะไม่กล่าวถึงสิ่งใดนอกเหนือไปจากสมาชิก ของเซตที่กำหนดขึ้น เช่น ถ้าเรากำหนดเซตของสมาชิกทุกคนในครอบครัวของผู้เรียนเองให้เป็นเซตใหญ่ที่สุด  เราจะเรียกเซตนี้ว่า เอกภพสัมพัทธ์   เขียนแทนด้วยสัญลักษณ์  U โดยมีข้อตกลงว่า เมื่อกล่าวถึงสมาชิกของเซตใด ๆ จะไม่กล่าวถึงสิ่งอื่นที่นอกเหนือจากสมาชิกในเอ อ่านเพิ่มเติม


สับเซบและเพาเวอร์เซต

สับเซต

    บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และ สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ⊂B    

   ตัวอย่างที่ 1           A = {1, 2, 3}

                                   B = { 1, 2, 3, 4, 5}

                                  ∴            A ⊂  อ่านเพิ่มเติม

ยูเนียน อินเตอร์เซกชันและคอมพีเมนต์ของเซต

ยูเนียน (Union)
บทนิยาม
      เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
ตัวอย่างเช่น A ={1,2,3}
  B= {3,4 อ่านเพิ่มเติม

การให้เหตุผลแบบอุปนัย

 การให้เหตุผลแบบอุปนัย (Inductive Reasoning) เกิดจากการที่มีสมมติฐานกรณีเฉพาะ หรือเหตุย่อยหลายๆ เหตุ เหตุย่อยแต่ละเหตุเป็นอิสระจากกัน มีความสำคัญเท่าๆ กัน และเหตุทั้งหลายเหล่านี้ไม่มีเหตุใดเหตุหนึ่งแสดงให้เห็นถึงความเป็นสมมติฐานกรณีทั่วไป หรือกล่าวได้ว่า การให้เหตุผลแบบอุปนัยคือการนำเหตุย่อยๆ แต่ละเหตุมารวมกัน เพื่อนำไปสู่ผลสรุปเป็นกรณีทั่วไป เช่นตัวอย่างการให้เหตุผลแบบอุปนัย
         1. สุนทรี พบว่า ทุกครั้งที่คุณแม่ไปซื้อก๋วยเตี๋ยวผัดไทยจะมีต้ อ่านเพิ่มเติม

การให้เหตุผลแบบนิรนัย

การให้เหตุผลแบบนิรนัย

                การให้เหตุผลแบบนิรนัยเป็นวิธีการให้เหตุผลโดยสรุปผลจากข้อความซึ่งเป็นความจริงทั่วไปมาเป็นข้ออ้างเพื่อสนับสนุนให้เกิดข้อสรุปที่เป็นความรู้ใหม่ที่เป็นข้อสรุปส่วนย่อยข้อสรุปที่ได้จากการให้เหตุผล

แบบนิรนัยนั้นจะเป็นข้อสรุปที่อยู่ในขอบเขตของเหตุเท่านั้นจะเป็นข้อสรุปที่กว้างหรือเกินกว่าเหตุไม่ได้การให้เหตุผลแบบนิรนัยประกอบด้วยข้อความ2กลุ่มโดยข้อความกลุ่มแรกเป็นข้อความที่เป็นเหตุ เหตุอาจมี

หลาย ๆเหตุ หลาย ๆข้อความ และข้อความกลุ่มที่สองจะเป็นข้อสรุป ข้อความในกลุ่มแรกและกลุ่มที่สองจะต้องมีความสัมพันธ์กัน

ข้อจำกัดของการให้เหตุผ อ่านเพิ่มเติม


จำนวนจริง

    จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
เซตของจำนวนเต็ม เขียนแทนด้วย I
                   I = { …,-3,-2,-1,0,1,2,3…}
เซตของจำนวนตรรกยะ เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน      โดยที่ a,เป็นจำน

การไม่เท่ากัน

การไม่เท่ากัน      
      การเปรียบเทียบจำนวนสองจำนวนว่ามากกว่าหรือน้อยกว่าได้ โดยเขียนอยู่ในรูปประโยคสัญลักษณ์ เช่น n แทนจำนวนเต็ม

      n >  5 หมายถึง จำนวนเต็มทุกจำนวนที่มากกว่า 5 เช่น 6 ,7 ,8 ,…

      n ≤ 1  หมายถึง จำวนเต็มทุกจำนวนที่น้อยกว่าหรือเทท่ากับ 1 เช่น 1  ,0 ,–1 ,–2, …

     n = 4 หมายถึง จำนวนทุกจำนวนที่ไม่เท่ากับ 4 เช่น … ,– 2 ,–1 ,0 ,1 ,2 ,3 ,5 ,6 ,… อ่านเพิ่มเติม


ฟังก์ชั่นเชิงเส้น


       ฟังก์ชั่นเชิงเส้น
ฟังก์ชันเชิงเส้น คือ ฟังก์ชันที่อยู่ในรูป y = ax+b เมื่อ a ,b เป็นจำนวนจริง และ กรำฟของ ฟังก์ชันเชิงเส้นจะเป็นเส้นตรง ตัวอย่ำงของฟังก์ชันเชิงเส้น ได้แก่ 1) y = x  2) y =2x +1  3) y = -3x ฟังก์ชัน y = ax + b เมื่อ a = 0 จะได้ฟังก์ชันที่อยู่ในรูป y = b ซึ่งมีชื่อ เรียกว่ำ ฟังก์ชันคงตัว (constant function) กรำฟของฟังก์ชันคงตัวจะเป็นเส้ อ่านเพิ่มเติม

ฟังก์ชั่นกำลังสมอง

       ฟังก์ชันกำลังสอง
ฟังก์ชันกำลังสอง คือ ฟังก์ชันที่อยู่ในรูป y = ax^2 + bx + c เมื่อ a, b, c เป็นจำนวน จริงใดๆ และ a ไม่เท่ากับ 0 ลักษณะของกราฟ ของฟังก์ชันขึ้นอยู่กับค่าของ a, b และ c เมื่อ a เป็นจำนวนบวกจะทำให้ได้กราฟเป็นเส้นโค้ง หงาย และเมื่อ a เป็นจำนวนล อ่านเพิ่มเติม